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Abstract: REDD+ is a UN-backed framework aimed at reducing carbon emissions in

developing countries through sustainable forest management and the protection and en-

hancement of forest carbon stocks. These are key goals for the international community to

achieve climate change mitigation through forestry. REDD+ programs deliver carbon, envi-

ronmentally based, and social benefits through incentives provided to local societies. This

study focuses on a quantitative assessment of the REDD+ framework from the perspective

of localized socio-economic shifts. The drivers–pressures–state–impact and partial least

squares–structural equation models were employed to evaluate impacts of socio-economic

change on multiple REDD+ benefits and their influential factors in the tropical rainforests

of Xishuangbanna, China. The results revealed that land-use changes form essential and

complex links between socio-economic and eco-environmental changes. Socio-economic

shifts in the recent twenty years in Xishuangbanna impacted carbon emissions mainly

through land-use change (impact coefficient = 0.909), which was nearly three times the

impact of land-use change on environmental degradation (0.322) and more than twice its

impact on social benefits (0.363). Such unbalanced impacts suggest a need to optimize local

policies through contextualized measures in a way that effectively addresses livelihood

improvements, enhancing carbon storage and environmental services to achieve REDD+

targets in the tropical rainforests of China.

Keywords: REDD+ benefit; quantitative assessment; local perspective; socio-economic

shifts; unbalanced impact; China’s tropical rainforest

1. Introduction

Forest carbon sinks are not only effective in reducing CO2 emissions but are also less

costly to maintain compared to implementing carbon reduction strategies [1,2]. Among

the various forest ecosystems, tropical rainforests are undoubtedly the most important

ecosystems for carbon sequestration. However, severe deforestation and forest degradation

can result in carbon loss far exceeding carbon gain in these rainforests, resulting in them

gradually becoming a source of net carbon loss [3–5]. This dynamic is particularly evident
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in tropical forests like the Amazon, where forest fires play a critical role in exacerbating

carbon stock depletion. Fires not only consume aboveground biomass but also significantly

reduce belowground carbon stocks, contributing to increased carbon emissions. Studies

have shown that human activities, such as logging, can amplify the severity and spread

of forest fires. For instance, Barni et al. highlighted that during the 2015–2016 El Niño,

selective logging in the Amazon significantly increased the likelihood of severe fires,

leading to substantial carbon stock losses and emissions [6]. Comparative data from such

studies underline the interconnectedness of logging, fire dynamics, and carbon emissions,

emphasizing the urgent need for integrated land management strategies to mitigate these

impacts. Without effective intervention, these processes could undermine the global carbon

balance and accelerate climate change [7,8].

Reducing Emissions from Deforestation and forest Degradation (REDD) in developing

countries is a program of the United Nations Framework Convention on Climate Change

(UNFCCC) that was first discussed in 2005, at the Conference of the Parties 11 (COP 11) in

Montreal, and 2007, at the COP 13 in Bali [9–11]. The 2009 Copenhagen Climate Conference

proposed strengthening sustainable forest management and conservation to enhance forest

carbon stocks based on REDD, introducing the REDD+ mechanism [12,13], which was

recognized as a key component of the Paris Agreement by the Intergovernmental Panel

on Climate Change (IPCC) in Paris in 2015 [14,15]. As a result, REDD+ mechanisms are

systematically being developed to protect forests and reduce carbon emissions. REDD+

mitigation policies are based on developed countries providing forest conservation funds

as positive incentives to developing countries to cover their opportunity costs and reward

their environmental performance; this reduces the deforestation and forest degradation

rates and increases forest carbon stocks in developing countries, thereby offsetting the

carbon emissions of developed countries [16,17].

REDD+ represents a three-win strategy in terms of the climate, ecology, and econ-

omy, with current research on its carbon benefits being prevalent [18–20]. In South-

east Asia alone, protecting 58% of the more severely affected forests would prevent

835 million tons of carbon dioxide from being released into the atmosphere annually

due to deforestation [21]. Indeed, for three consecutive years, forest carbon storage rose

at various elevations and canopy types in Nepal through numerous REDD+ pilot pro-

grams [22]. Some scholars believe that non-carbon benefits, such as biodiversity conserva-

tion and livelihoods, have a significant impact on the effectiveness of the REDD+ frame-

work, and that planning should consider both carbon and non-carbon benefits [23–25].

In terms of ecological benefits, an analysis of remote sensing images of the Indonesian

region revealed synergistic effects between carbon loss and forest fragmentation and

soil erosion [26], with related studies demonstrating similar scenarios in Africa, southern

Brazil, and southwestern China [27–29]. Benefits gained from forest ecosystem services are

consistently greater in REDD countries [30]. In terms of socio-economic benefits, carbon

emission reduction can promote economic development and increase employment and

productivity [31]. For instance, REDD+ mechanisms can improve rural livelihoods and

employment by paying opportunity costs to landholders that implement sustainable forest

management measures [32].

China, as a party to the Kyoto Protocol and the UNFCCC, has committed to achieving

peak carbon dioxide emissions by 2030 and reducing emissions to gain carbon neutral-

ity by 2060 [33–35], which requires the guidance and support of the REDD+ framework.

The Xishuangbanna region contains the most complete tropical rainforest ecosystem in

the country, with 16% of its total plant species [36]. Rubber trees were introduced to the

Xishuangbanna region in the 1950s and their harvesting reached a commercial scale by the

1980s; such direct economic benefits prompted a massive expansion of rubber plantations,
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which led to the severe destruction of tropical rainforests [37–39]. This expansion was

driven not only by economic incentives but also by national policies encouraging cash crop

production to boost economic growth and address rural poverty, as well as international

market demands for natural rubber [40,41]. The booming global automotive and manufac-

turing industries significantly increased the demand for natural rubber, further accelerating

its cultivation in tropical regions like Xishuangbanna. The cultivation of a single cash

crop not only causes ecological issues like severe water and soil loss, reduced rainfall and

drought, and reduced river flows [42–45], but it also poses a serious threat to biodiversity

and has a significant impact on carbon emissions [46,47]. Additionally, community-level

land-use decisions, influenced by the household responsibility system and farmers’ pursuit

of economic gains, further accelerated the expansion of rubber plantations into ecologi-

cally sensitive areas, including high-altitude regions and former paddy fields [48]. The

Xishuangbanna region has opened the way for the smooth implementation of the REDD+

program in China to serve as a reference for other national regions. By addressing these

socio-economic drivers through REDD+ initiatives, the program can mitigate the adverse

impacts of land-use changes while promoting sustainable development practices. The mul-

tiple benefits of the REDD+ program can also provide a new solution to the human–land

conflict in Xishuangbanna, helping the region achieve a win–win situation in terms of

climate, ecology, and economy.

The objective of this study was to quantitatively assess the REDD+ framework from

the perspective of socio-economic shifts, using the Xishuangbanna tropical rainforest region

as the study area and applying the driver–pressure–state–impact (DPSI) model. Socio-

economic factors were used as drivers, and REDD+ benefits as influences, and the two were

connected through land-use change (state), allowing an analysis of the causal relationship

between these three elements in an integrated manner. We applied partial least squares

structural equation modeling (PLS-SEM) to quantify the components of the theoretical

model, test its applicability, and explore the quantitative links between its different com-

ponents. Specifically, we attempted to answer the following three questions: (1) How are

the driver–pressure–state–impact elements interconnected in the Xishuangbanna region?

(2) What role does land use play between socio-economic shifts and REDD+ benefits?

(3) What is the quantitative link between socio-economic shifts and REDD+ benefits?

2. Materials and Methods

2.1. Study Area and Period

Figure 1 shows the location of the Xishuangbanna Prefecture in the southwestern Yun-

nan Province of China. The expansion of rubber plantations was very rapid in Xishuang-

banna, with the area of rubber land increasing from only 1.25% of the total land area in

1976 to 11.30% by 2003 [49]. Therefore, this study analyzed the 1976–2007 period as the

REDD+ baseline, as deforestation and land-use change were at their most severe in the

region [38,50]. The plantations established during this period were primarily driven by na-

tional policies promoting agricultural expansion and economic crops like rubber. Currently,

many of these plantations have reached maturity, with some being actively harvested, while

others have undergone cycles of regeneration or have been replaced by secondary forests

due to shifts in land-use priorities. The selection of this specific time interval is based on its

significance in capturing the peak of deforestation and land conversion activities, which

set the stage for current land-use patterns and their associated carbon dynamics. This

period provides a critical historical benchmark for understanding the long-term impacts of

land-use change and for assessing the potential of REDD+ interventions to mitigate similar

challenges in the future.
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Figure 1. The location of the Xishuangbanna Prefecture in the southwestern Yunnan Province

of China.

Land-use changes and the resulting carbon budget in Xishuangbanna were analyzed

according to three periods that reflected different national policies. (1) The 1976–1992 stage

allowed the uncontrolled development of traditional agriculture during the early years of

national reform. Traditional rice culture and farming practices prevailed from a viewpoint

of “deforestation to grow food” [51], rubber cultivation was in its infancy, and land use

began to change. (2) The 1992–1999 stage introduced a series of rubber planting subsidy

policies to meet material and cultural needs and improve social productivity. This resulted

in the disorderly and dramatic development of private rubber plantations and concomitant

land-use change [52,53]. (3) The 1999–2007 stage represented the construction of ecological

and environmental protection policies after the unbridled expansion of rubber caused
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damage to local ecosystems [54,55]. However, driven by the price of natural rubber, rubber

cultivation continued in this period, which exhibited more complex land-use changes.

2.2. Geographical and Land-Use Data

Landsat data were downloaded from the United States Geological Survey website

http://www.usgs.gov/ (accessed on 1 November 2023), pre-processed with radiation and

atmospheric correction, and then cropped using the Xishuangbanna Administrative Vector

Map to obtain a Xishuangbanna image.

Nine land-use types were identified for the Xishuangbanna region and were divided

into four land-use zones—(1) natural eco-region zone: forested, shrub, and barren grass

land-use types; (2) economic crop zone: rubber and tea land-use types; (3) food crop zone:

dry land and paddy field land-use types; and (4) human living zone: construction and other

land-use types. Socio-economic data were obtained from the Yunnan Statistical Yearbook and

the Xishuangbanna Statistical Yearbook.

2.3. Research Methodology

2.3.1. Land-Use Carbon Budget

The 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas

Inventory states that carbon accounting in ecosystems should include carbon storage in the

living biomass (LB) [56], dead organic matter (DOM), and soil organic matter (SOM) carbon

storage. The LB consists of aboveground biomass (AB) and belowground biomass (BB);

the DOM comprises dead wood (DW) and leaf litter (LI) [57]. This provides a reference for

accounting for changes in carbon storage due to land-use changes:

CT = CLB + CDOM + CSOM (1)

where CT (tC) is the total carbon storage in land ecosystems; CLB (tC) is the living biomass

carbon storage; CDOM (tC) is the dead organic matter carbon storage; and CSOM (tC) is the

soil organic matter carbon storage. We calculated CDOM as follows:

CDOM = CDW + CLI (2)

where CDW (tC) is the dead wood carbon storage; and CLI (tC) is the leaf-litter car-

bon storage, which has been accounted for by many scholars for carbon density in the

Xishuangbanna region [58–60].

2.3.2. DPSI Framework and PLS-SEM

Our study uses the DPSI model as a theoretical framework to construct a system of

indicators and uses PLE-SEM to reflect the interrelationship between the various compo-

nents of the DPSI model [61]. Thereby, we can analyze the pathways and mechanisms

linking socio-economic shifts, land-use changes, and the multiple benefits of REDD+. As

an environmental valuation model, the DPSI framework is based on causality [62,63]. It

connotes socio-economic factors as a driving force, of which the development increases

pressure on the environmental system, which in turn changes the state of the environmental

system itself, which in turn impacts the ecosystems, socio-economic development, and

resources. In the DPSI framework, drivers represent the socio-economic factors, such as

agricultural expansion, population growth, and international market demand, that instigate

pressures on the ecosystem. Pressures refer to the immediate consequences of these drivers,

such as deforestation, rubber plantation expansion, and land degradation. The state de-

scribes the condition of the ecosystem, including carbon stock reductions and biodiversity

losses. Impacts encompass the broader ecological and socio-economic consequences, such

http://www.usgs.gov/
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as heightened carbon emissions, reduced ecosystem services, and social inequality. REDD+

is designed to address the drivers by incentivizing sustainable land-use practices and

reducing pressures through forest protection initiatives. This contributes to improving the

ecosystem state by stabilizing carbon stocks and minimizing impacts through enhanced

socio-economic resilience. Table 1 aligns the DPSI components with study variables and

explains the significance of the indexes. The framework has been widely applied.

Table 1. The DPSI index system.

Latent Variables Observed Variables The Significance of the Indexes

Driver Socio-economic changes

V1. Fixed asset investment
The amount of fixed asset investments

under socio-economic development

V2. Total population The total population resource

V3. Fiscal revenue
The financial position

of the government

Pressure

Production factor supply

V4. Agricultural
intermediate consumption

The size of intermediate inputs for
agricultural development

V5. The amount of
chemical fertilizer

The demand for fertilizer for regional
agricultural development

Transportation

V6. Highway mileage The scale of road construction

V7. Ownership of civil cars
The level of

transportation development

State Land-use change

V8. Rubber yield The change in rubber land area

V9. Grain yield Changes in agricultural land area

V10. Cultivated area Changes in cultivated land area

V11. Tea yield Changes in tea land area

Impact

Carbon benefits
V12. Carbon emissions Changes in carbon emissions

V13. Power generation Regional power generation

Social benefits

V14. The total output value
of agriculture

The scale and results of agricultural
production over time

V15. Per capita net income
of farmers

The standard of living of farmers

V16. The added value of
primary industries

The total value added by primary
industries (such as agriculture

and forestry)

Environment-based benefits

V17. Landscape aggregation
The degree of aggregation

of the landscape

V18. The number of
landscape patches

The fragmentation of the landscape

V19. Rural
electricity consumption

Rural energy use

PLS-SEM combines a principal component analysis with ordinary least squares regres-

sion to construct, estimate, and test causality [64,65]. It is an important tool for analyzing

multivariate data and is attractive to many researchers because it has a small sample re-

quirement and does not require data to be normally distributed. PLS-SEM mainly consists

of a measurement (Equation (3)) and a structural model (Equation (4)). The measurement
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model describes the relationship between latent variables and observed variables, and the

structural model describes the interrelationships within latent variables:

X = Λxξ + σ

Y = Λyη + ε
(3)

where X is an exogenous observed variable; Y is an endogenous observed variable; Λx is

the factor load matrix of exogenous observed variables on exogenous latent variables; Λy is

the factor load matrix of endogenous observed variables on endogenous latent variables; σ

is the exogenous latent variable error; ε is the endogenous latent variable error; and η and ξ

correspond to endogenous latent variables and exogenous latent variables, respectively, as

calculated using

η = Bη + rξ + ζ (4)

where B and r are path coefficients, with B representing the relationship between endoge-

nous latent variables and r representing the influence of exogenous latent variables on

endogenous latent variables; ζ is the residual.

Cronbach’s α coefficient is the most commonly used reliability coefficient, mainly used

to measure the stability and reliability of experimental results. Usually, this coefficient is

between 0 and 1; a value >0.6 indicates that the experiment has an acceptable degree of

reliability. The coefficient is calculated as follows:

α =
k

k − 1

(

1 −
∑

k
i=1 S2

i

S2
X

)

(5)

where k is the number of indicators; Si corresponds to the variance of the i-th indicator; and

Sx is the variance of all indicators tested.

The reliability is the proportion of the real score, and the path coefficient that cannot

reflect the real score in the observation score is the variation in the measurement error.

The observed variable scores for some indicators are affected by potential factors and

measurement error, which in turn affects the true score, so Fornell and Larker proposed

a composite reliability (CR) coefficient to reduce the error [66]:

CR =
(∑ λi)

2

[

(∑ λi)
2 + ∑ Θii

] (6)

where (∑ λi)
2 is the square of the sum of the factor loadings λ; and ∑ Θii is the sum of

the residual variances of each observed variable Θ. Since the measurement model with

residual correlation has an impact on the path coefficient, it is necessary to include the

residual correlation in the calculation of CR as follows:

CR =
(∑ λi)

2

[

(∑ λi)
2 + ∑ Θii + 2∑ Θij

] (7)

where ∑ Θij is the sum of the residual covariances of the i-th and j-th indicators.

The higher the factor loading of the indicator of interest, the higher the ability of the

indicator to reflect latent variables and the greater the degree of variation in the observed

variables it explains. The average variance extracted (AVE) is then used to indicate the
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degree of convergence of the indicator, i.e., to determine whether a set of observed variables

can effectively estimate latent variables:

AVE =
∑ λi

2

(

∑ λi
2 + ∑ Θii

) (8)

where ∑ λi
2 is the sum of the squared factor loadings.

3. Results and Analysis

3.1. Land-Use Change

In general, during the entire study period of 1976–2007, the area of natural eco-regions

in Xishuangbanna decreased, the areas of economic crop and human living zones increased,

and the area of food crop zones decreased slightly (Figure 2). The region was mainly

characterized by decreases in forested, dry, and other land, and by increases in shrub,

rubber, barren, construction, and tea land; appreciable differences were observed in the

changes in each land type.

 

tt

ff

Figure 2. Magnitude and transfer of land-use change during entire study period of 1976–2007.

The area of forested land decreased continuously from 1976 to 2007. This comprised

a total decrease of 5260.18 km2, of which the largest decrease was 2173.30 km2 from 1999 to

2007, during which forests were mainly transformed into rubber and shrubland. The dry

land area also decreased during the 31 years but showed an increase of 441.12 km2 in 1999

and a subsequent decrease of 495.27 km2 between 1999 and 2007, resulting in little overall
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change. The area of other land reduced only slightly, mainly by 184.33 km2 between 1976

and 1992, most of which comprised a conversion into forested, shrub, and rubber land.

The most appreciable increase in land use in Xishuangbanna across the study pe-

riod was in shrubland, which showed a total increase of 2473.12 km2 mainly due to the

degradation of forested land. This was followed by rubber land area, which increased

continuously from 1976 to 2007 by a total of 1889.72 km2. Its area increase from 1999 to

2007 was almost the same as that in the 23 years preceding 1999, and it was mostly the

result of the conversion of forested and dry land. The area of barren grass and construction

land increased by 95.21 km2 and 278.09 km2, respectively. The tea land area only showed

a small decrease from 1992 to 1999, with an overall upward trend.

3.2. Carbon Budget Change Pathways

The land-use changes among the four zones we identified can be expected to have

an impact on carbon adsorption and emission in the Xishuangbanna region. Therefore, we

systematically analyzed the carbon budget under different land-use change paths (Figure 3).

  

Figure 3. Net carbon budget as function of carbon absorption and emissions among natural eco-

regions, human living zones, economic crop zones, and food crop zones.
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Overall, land-use change resulted in more carbon emissions than carbon absorption.

The amount of carbon absorption first decreased after 1976 to reach its lowest values

in 1992–1999, but then increased again until 2007. In contrast, the carbon emissions

showed a relatively large increase from 15,182.90 thousand tons of carbon in 1976 to

18,420.00 thousand tons in 2007.

In terms of the carbon budget, carbon emission pathways kept increasing (from

two to five), while those of carbon absorption kept decreasing (until only two remained).

The main paths of carbon emission in the 1976–1992 stage, encompassing the free devel-

opment of traditional agriculture, were linked with the conversion of natural eco-regions

to food crop and human living zones. Before 1992, there were many paths for carbon

absorption, which were dominated by the conversion of human living zones to economic

crop zones and food crop zones; this is likely to be related to the national policy of rub-

ber expansion and household responsibility system implemented at the beginning of the

economic reform period in 1978. The increase in carbon emission pathways during the

1992–1999 stage of disorderly industrial development was mainly caused by the transfor-

mation of natural eco-regions to food crop and human living zones, as the demands of

an exploding population led to the large-scale development of natural eco-regions. All

the paths during the 1999–2007 stage of establishing environmental protection represented

increasing carbon emissions, except for the conversion of human living zones into food crop

zones and food crop zones into economic crop zones (which constitute carbon absorption).

Mainly because of the influence of market speculation, the price of Pu’er tea soared in 2007

and tea was widely planted at the time, serving as a relatively large source of carbon emis-

sions. The rubber industry was expanding simultaneously, and large natural eco-regions

are still being transformed into economic crop zones. Although carbon absorption has

increased since the implementation of national policies for natural forest conservation and

the “grain for green project”, the carbon budget is still mainly negative in the short term.

3.3. Path Analysis of Role of Socio-Economic Shifts in REDD+ Benefits

A REDD+ benefit evaluation system was established for the Xishuangbanna region,

with socio-economic shifts as the driver (D), production factor inputs as the main pressure

(P), land-use change as the main state (S), and REDD+ carbon benefits (I1), social benefits

(I2), and environment-based benefits (I3) as the impacts in a DPSI model. The model was

assembled using 19 specific observed variables (Table 1). All indexes passed the significance

test and reflected the basic characteristics of latent variables. Based on the requirements

of the reliability and validity tests (Cronbach’s α value > 0.6; CR > 0.7; AVE > 0.5), the

relevant indexes met all standards (Table 2) and could explain approximately 90% of the

total number of variances; therefore, the overall measurement model was determined to be

credible and valid.

As shown in Table 3, except for D and P and P and I3, the square roots of all AVEs

on the diagonal were greater than the coefficients in corresponding rows and columns. To

further discern the discriminant validity among the latent variables, the confidence interval

method was used (Table 3). The 95% confidence interval of the correlation coefficients of

any two latent variables did not contain 1, supporting the significance of the structure and

confirming the discriminant validity of our model [67–69].
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Table 2. The significance of test results and reliability and validity test indexes of the measurement

model and results.

Latent Variables Cronbach’s α
Composite

Reliability (CR)
Average Variance
Extracted (AVE)

Observed
Variables

Path Coefficient

Driver (D) 0.955 0.971 0.918

V1 0.966 ***
V2 0.982 ***
V3 0.927 ***

Pressure (P) 0.917 0.942 0.803

V4 0.953 ***
V5 0.928 ***
V6 0.812 ***
V7 0.885 ***

State (S) 0.926 0.945 0.812

V8 0.962 ***
V9 0.843 ***

V10 0.889 ***
V11 0.908 ***

Impact 1 (I1) 0.934 0.968 0.938

V12 0.971 ***
V13 0.967 ***
V14 0.923 ***

Impact 2 (I2) 0.937 0.96 0.888
V15 0.943 ***
V16 0.961 ***

Impact 3 (I3) 0.973 0.982 0.949

V17 0.974 ***
V18 0.978 ***
V19 0.971 ***

Note: *** indicates statistical significance at the level of 0.001.

Table 3. Discriminant validity test of measurement model (AVE test and confidence interval test).

Variable Pairs AVE Test
95% Confidence Interval of Correlates

Lower Bound Upper Bound

D D 0.958 NA * NA
D P 0.947 0.906 0.976
D S 0.877 0.858 0.924
D I1 0.929 0.874 0.971
D I2 0.939 0.918 0.985
D I3 0.955 0.912 0.982
P P 0.896 NA NA
P S 0.734 0.658 0.832
P I1 0.877 0.793 0.940
P I2 0.891 0.832 0.946
P I3 0.944 0.915 0.972
S S 0.901 NA NA
S I1 0.892 0.865 0.956
S I2 0.899 0.874 0.960
S I3 0.842 0.764 0.915
I1 I1 0.969 NA NA
I1 I2 0.940 0.898 0.977
I1 I3 0.942 0.887 0.972
I2 I2 0.942 NA NA
I2 I3 0.936 0.891 0.970
I3 I3 0.974 NA NA

Note: The diagonal element is the square roots of AVE and the other elements are the correlation coefficients of
each latent variable. * NA for Not Applicable.

Figure 4 indicates that the R2 values corresponding to P, S, I1, I2, and I3 were 0.901,

0.538, 0.826, 0.930, and 0.940, respectively. Being >0.5, these values indicate that the
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observed variables in our model possessed a high explanatory power for the latent variables.

The path coefficients between each criterion layer met the requirements (p < 0.05), and all

hypotheses were supported (Table 4).

 

ffi

ffi

ff
ffi

ffi
ff

Figure 4. Results of the model runs.

Table 4. Results of research hypothesis testing.

Research Hypothesis Path Coefficient p-Value Results of Hypothesis Testing

H1:D→P 0.949 0.000 Acceptance
H2:D→I2 0.630 0.001 Acceptance
H3:P→S 0.734 0.000 Acceptance
H4:P→I3 0.708 0.000 Acceptance
H5:S→I1 0.909 0.000 Acceptance
H6:S→I2 0.363 0.002 Acceptance
H7:S→I3 0.322 0.001 Acceptance

The results showed that the components of D, P, S, I1, I2, and I3 in the model were

interlinked and closely related. Socio-economic shifts were the main driving factor acting

on the land-use status in Xishuangbanna through production factors, which promoted the

expansion of economic and food crop zones to impact the REDD+ benefits. Simultaneously,

socio-economic shifts and production factor inputs themselves also had an impact on some

of the benefits of REDD+. This confirms that a network of relationships exists among the

socio-economic shifts, land-use changes, and REDD+ benefits in Xishuangbanna, consistent

with the complex linkages between human society and the environment.
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This study employed the Bootstrapping method to test the significance of path coeffi-

cients in the PLS-SEM model to calculate t-values and confidence intervals. The analysis of

the result refers to Silva et al. [70]. The results confirmed that all hypothesized paths were

statistically significant, demonstrating robust and rational causal relationships between

latent variables. For the path from drivers (D) to pressures (P), the path coefficient was

0.949 with a 95% confidence interval of [0.906, 0.976], indicating a strong and significant

impact of drivers (e.g., fixed asset investment, fiscal revenue, and total population) on

production factor inputs. Similarly, the path from pressures to land-use state (P → S)

had a path coefficient of 0.734, validating the significant influence of production factors

(e.g., fertilizer use and highway mileage) on land-use changes.

The paths from land-use state to REDD+’s multiple benefits (S → I1, I2, I3) revealed

significant yet imbalanced effects. The path to carbon benefits (I1) showed the highest

impact with a coefficient of 0.909, indicating that land-use changes significantly influence

carbon emissions. The path to social benefits (I2) had a coefficient of 0.363, suggesting

a relatively smaller but still significant effect on social outcomes such as farmers’ income

and agricultural output. The path to environmental benefits (I3) showed the lowest impact,

with a coefficient of 0.322, indicating that while land-use changes affect ecological conditions

(e.g., landscape aggregation and fragmentation), the effect is less pronounced.

Furthermore, drivers (D) indirectly influenced REDD+ benefits through pressures

(P) and land-use state (S), with high explanatory power demonstrated by R² values of

0.901 (pressures), 0.538 (land-use state), 0.826 (carbon benefits), 0.930 (social benefits), and

0.940 (environmental benefits). The Bootstrapping method not only validated the signif-

icance of these paths but also confirmed their directional rationality through confidence

intervals. These findings illustrate the complex causal relationships among drivers, pres-

sures, land-use state, and REDD+ benefits, providing robust quantitative support for the

study’s hypotheses and offering critical insights for optimizing policies to achieve balanced

REDD+ objectives.

3.3.1. Analysis of Impact of Socio-Economic Shifts on Land-Use Change

Socio-economic shifts (D) had a significant positive impact on production factor inputs

with an impact coefficient of 0.949. In other words, when the driver changes by 1 unit,

the input of production factors changes by 0.949 units in the same direction. Compared

with fiscal revenue, both the total population and fixed asset investment variables exerted

a greater influence on production factor input. Socio-economic growth promoted an up-

grading of industrial structures to develop the industrial sector to a certain extent. In terms

of agricultural production, large-scale investment into more agricultural instruments and

fertilizers and the promotion of private car ownership have increased agricultural interme-

diate consumption. Simultaneously, the growing economy has driven the development

of transportation, radiating outward from urban centers and penetrating urban and rural

areas to promote the flow of production factors, thereby improving labor productivity and

land production efficiency to a great extent.

Production factor inputs had a positive influence on land-use change state with

a significant influence coefficient of 0.734. Xishuangbanna has a unique natural environ-

ment that is suitable for the growth of rubber plantations. Therefore, an input of production

factors allowed a continuous increase in the production of natural rubber. As early as

2007, the natural rubber planting area had reached 24.87 km2, and the output of dry rubber

exceeded 200 thousand tons. The planting area also gradually expanded from low- to

high-altitude areas. Increased global demand for tea, along with transportation devel-

opments, resulted in tea plantations in the Yunnan state exceeding 600,000 mu in 2007,

with economic crop zones continuing to occupy the natural eco-regions. At the same time,



Forests 2025, 16, 120 14 of 24

the conflict between human needs and land availability has gradually intensified with

population growth. Developments in farming technology and transportation have allowed

local residents to cut down and burn forested areas, transforming large areas of natural

eco-regions into food crop zones to meet the growing demand for food. Due to the massive

input of production factors, the speed of the human conquest of nature has accelerated

with economic and food crop zones gradually replacing the natural eco-regions.

3.3.2. Analysis of Unbalanced Impacts of Land-Use Change on REDD+’s Multiple Benefits

Land-use change state had a positive influence on REDD+ social benefits with

an influence coefficient of 0.363. In other words, when the land-use state changes by

1 unit, REDD+ social benefits will change by 0.363 units in the same direction. Since the

indexes characterizing REDD+ carbon benefits and environment-based benefits are neg-

ative indexes, the land-use change state had a negative effect on REDD+ carbon benefits

and environment-based benefits in Xishuangbanna, with their degrees of influence being

0.909 and 0.322, respectively. Every 1 unit of land-use state change resulted in a change of

0.909 units of carbon emission and 0.322 units of burden to the environment.

These results emphasized that land-use change has had an unbalanced impact on the

multiple benefits of REDD+, with the negative impact on carbon benefits far outweighing

environmental and social benefits. In the 1990s, economic development was the key focal

point in the country. A national policy of rubber expansion and the household responsibility

system were in effect, the prices of natural rubber and tea were rising, and Xishuangbanna

residents switched to planting economic and food crops, destroying the natural eco-regions

at a large scale. The unplanned spread of plantations combined with the considerable

area planted with economic crops led to the exploitation of many forests that functioned

as water sources, causing serious water and soil losses. In addition, the construction of

the Xishuangbanna Hydropower Station destroyed habitats and changed the local climate,

further resulting in the conversion of vast tracts of forested land into shrub and agricultural

lands. With these forests representing the largest carbon sink on land, the continued

destruction and degradation of natural eco-regions will inevitably lead to a decrease in

carbon storage and an increase in carbon emissions, which will have a significant negative

impact on the REDD+ carbon benefits with a 0.909 degree of influence.

Compared to carbon emissions, the impact of land-use change on the social and envi-

ronmentally based benefits of REDD+ is smaller. This is mainly because the economic crop

zones occupied the food crop zones, leading to less space being available for the develop-

ment of primary industries and to farmers earning relatively less profit. Meanwhile, rubber

plantations rapidly expanded to high-altitude areas, which are not particularly suitable

for their growth and do not offer higher economic benefits. This explains why the degree

of impact that land-use change had on REDD+ social benefits was only 0.363. Due to the

excessive application of chemical fertilizers during cultivation, the soil structure composi-

tion has been damaged. Simultaneously, large-scale agricultural activities have increased

rural electricity consumption, which has had a series of influences on the land-use pattern.

As a result, the landscape aggregation decreased significantly in Xishuangbanna, and the

landscape pattern tended to be fragmented into different land-use patches. Although the

overall environmental benefits were negative, the national grain and afforestation project

gradually played their role. Moreover, both economic and food crops provide certain

ecological functions, reducing the negative impact of land-use change on environmentally

based benefits of REDD+.
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3.3.3. Analysis of Other Effects of Socio-Economic Shifts and Production Factor Inputs

The positive impact coefficient of socio-economic shifts on the REDD+ social benefits

was a significant 0.630. The early development of Xishuangbanna mainly depended on

agriculture. Socio-economic growth strengthened agricultural technology and its financial

support, improving production conditions and increasing land-use efficiency and agricul-

tural productivity. Thus, the added value of the primary industry and the total output

value of agriculture have increased, and the per capita net income of farmers also increased.

The negative impact of production factor input on the ecological environment reached

0.708, indicating that the burden on the ecological environment increases by 0.708 units for

each unit change in production factor input. A higher input of production factors led to

greater agricultural intermediate consumption. Xishuangbanna generally exhibits a low

level of agricultural development, utilizing traditional and extensive farming methods. The

excessive application of chemical fertilizers and pesticides leaves a large amount of soil

residues that can lead to agricultural non-point source pollution. These toxic substances

cannot be degraded, which will further affect the local ecological environment. The in-

creased use of agricultural machinery has furthermore led to the continuous exploitation of

land resources in Xishuangbanna, resulting in the landscape fragmentation mentioned in

Section 3.3.2. Oil leaks and exhaust emissions from agricultural machinery also pollute the

soil and atmosphere. Meanwhile, the use of electrified farming equipment has increased

the demand for electricity in rural areas, necessitating an increase in power generation that

has had a considerable negative impact on environmental benefits.

4. Discussion

The main purpose of this study was to empirically quantify the impact of socio-

economic changes on the REDD+ benefits and to quantitatively assess the relationship

between the components in a DPSI model. The linkages between socio-economic devel-

opment and eco-environmental changes in Xishuangbanna are complex. The DPSI model

helps to accurately identify the driver, pressure, and other elements in the dynamic human–

environment interaction system [71,72], and a set of indexes was established based on

this framework. The results demonstrated that the impact of production factor input on

land-use change reached 0.734 and had different effects on various REDD+ benefits. Such

a quantitative assessment translated complex conceptual relationships into operational

guidelines that can help policymakers to assess the effectiveness of current ecological

conservation policies, provide direction for future policymaking [73,74], and answer the

three questions posed in our Introduction.

4.1. Drivers and Impacts of Land-Use Change on the Eco-Environment and Carbon Dynamics
in Xishuangbanna

Land-use change is the result of a combination of direct and indirect drivers and has

exerted a significant impact on the ecological environment of Xishuangbanna. Relevant

studies have shown that human activity factors such as population growth, socio-economic

development, and agricultural expansion have been direct drivers of an appreciable change

in land-use patterns, while national policies and market economic factors have been the

main indirect drivers thereof [75–78]. Our study shows that, in the 32 years from a stage

of free development of traditional agriculture to the construction of eco-environmental

protection, the natural eco-regions in Xishuangbanna have reduced by 5260.179 km2, being

mainly transformed into economic crop and human living zones. In the DPSI framework

analysis, we also found that socio-economic shifts acted on production factor inputs and

influenced land-use change by a degree of 0.734. This result is consistent with other studies

in which human socio-economic development and the demand for agricultural land were
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shown to affect a dramatic shrinkage of tropical forests [79,80]. This direct effect can be

explained by the fact, since the years of national economic reform, the continuous socio-

economic development of Xishuangbanna has led to a rapid expansion of urban land, from

about 15 km2 in 1976 to 97 km2 in 2005 [81]. Population growth has increased the demand

for food, and socio-technical development has reduced the difficulty of land reclamation,

resulting in a continuous expansion of agricultural land and dramatic land-use changes.

A distinctive feature of land-use change in Xishuangbanna is that the area of natural eco-

regions is decreasing while the area of economic crop zones is increasing significantly as

a result of the indirect influence of national policies and the market economy. Rubber

was brought to Xishuangbanna in 1940, and after the land system reform in the 1980s,

individual farmers began to plant rubber under rubber expansion policies [82]. After 1999,

the state launched countering policies such as the “grain for green” and “natural forests

conservation” projects, which have been slightly effective. However, the economic crop

zones are still expanding due to export requirements and the price of natural rubber. Land-

use change will lead to a structural imbalance in ecosystems, decreasing the value of their

services in soil and water conservation, climate regulation, and biodiversity conservation,

and generating environmental problems such as environmental degradation and excessive

carbon emissions [83].

We calculated the carbon absorption and emissions under different land-use transfer

paths, analyzing the carbon budget in Xishuangbanna at different stages. The total carbon

budget in Xishuangbanna was negative at all stages, and the carbon emission paths are

increasing. This result is similar to the findings of Min et al., who concluded that about

21 Mg/ha of annual carbon emissions in Xishuangbanna was related to the expansion of

the rubber industry [84]. Although rubber forests display a higher carbon density and

may sequester slightly more carbon than natural ecological zones in the short term, their

monoculture structure and long-term planting will eventually lead to forest degradation

and generate more carbon emissions [85–87]. Dramatic land-use changes reduce the

connectivity and stability of the landscape pattern, and the fragmented pattern in turn

leads to a series of problems such as environmental degradation [88]. This was verified in

our DPSI framework analysis, where the effect of land-use change on the eco-environment

reached 0.909 and 0.322 for carbon emissions and environmental degradation, respectively.

How to coordinate the interrelationship between nature, society, and the economy in the

later stages of the development of a country is an urgent issue that needs to be resolved.

4.2. The Role of REDD+ in Balancing Carbon, Ecological, and Social Benefits Amid
Socio-Economic Shifts

REDD+ programs aim to help developing countries reduce their carbon emissions

while also benefiting socio-economic development and ecological conservation [89,90].

Socio-economic shifts drive changes in land-use patterns and thus have an unbalanced

impact on the multiple benefits of REDD+. While carbon benefits are central to REDD+ pro-

grams, non-carbon benefits also enable the sustainability of REDD+ action effects [91–93],

and the assessment of both is equally important. A study of Malaysian forest reserves

revealed that the intensity, nature, and extent of REDD+ ecological benefits depended on

the carbon storage distribution characteristics, with higher species richness in areas with

higher carbon storage and lower species richness in areas with lower carbon storage [94].

Our study analyzed the REDD+ carbon benefits, ecological benefits, and social benefits

as independent research objects. A quantitative analysis showed that changes in land

use brought on by socio-economic shifts in the Xishuangbanna region had an unbalanced

impact on multiple benefits of REDD+, with the greatest impact being on carbon emissions,

which was nearly three times higher than the impact on ecological degradation and more

than twice the impact on social benefits.
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One plausible explanation for this result is that rising material and cultural needs have

increased human living zone coverage, and national policies such as “take grain as the key

link”, “deforestation to grow food”, and blind “rubber expansion” have resulted in the

disorderly expansion of food crops and economic crop zones. These effects have severely

damaged natural eco-regions and increased carbon emissions, which exert a detrimental effect

on carbon efficiency. The household responsibility system has provided Chinese farmers with

autonomous land-use and crop selection rights [95,96], and the unique climatic conditions in

the Xishuangbanna region along with the stimulation of rubber prices internationally set off

a wave of rubber cultivation. In pursuit of maximizing their financial benefits, farmers have

planted rubber at higher altitudes, in low-relief canyon areas, and even in cultivated paddy

fields [97,98]. Too low or too high an altitude renders rubber trees susceptible to chilling, which

affects the quality of their dried rubber. Past experiences have also indicated that planting

rubber in field dams (which cannot reach the exploitation standard for many years) reduces

the economic return for farmers and lowers the impact of land-use changes on social benefits.

From a different perspective, the substitution of extensive economic crop zones for natural

eco-regions is not an equivalent exchange. Nevertheless, adopting the “Land Maxing” concept

could offer a sustainable solution to these challenges. “Land Maxing” is a sustainable land-use

approach that integrates multifunctional agroforestry systems to maximize ecological, social,

and economic benefits while restoring degraded landscapes [99,100]. By integrating rubber-

based agroforestry systems into conventional farming practices, “Land Maxing” maximizes

the ecological, social, and carbon benefits of land use [101]. This approach emphasizes

restoring degraded land, conserving biodiversity, and improving soil fertility while enabling

farmers to achieve financial stability. Many researchers are currently promoting rubber-based

agroforestry systems to reduce land degradation [102–104], and the Xishuangbanna region

has also shifted its focus to ecological environmental protection by enacting policies like the

“natural forest protection” and “grain for green” projects. Hence, the effect of land-use change

on ecological degradation is curtailed. In short, it is necessary to implement REDD+ programs

in the Xishuangbanna region to reap the combination of carbon, ecological, and social benefits.

4.3. Effectiveness of REDD+ Programs in Reducing Deforestation and Promoting
a Climate–Ecology–Economy Win-Win Solution

REDD+ programs promote sustainable forest development and climate change mitiga-

tion through financial and institutional incentives for developing countries to reduce their

levels of deforestation and forest degradation. To date, more than 350 REDD+ programs

have been implemented effectively in over 50 countries [105–107]. Jayachandran et al. eval-

uated a program employing payment for ecosystem services under the REDD+ mechanism

in Uganda, conducting a randomized controlled trial across 121 villages. They found that

the forest cover reduction rate was significantly lower in the experimental group under

the REDD+ program (4.2%) than in the control group (9.1%); by assessing CO2 emissions,

the authors furthermore concluded that the benefits of the scheme were 2.4 times its costs,

providing ample evidence of its effectiveness [108]. A counterfactual time series trajectory

of annual forest cover loss in Guyana similarly showed that the implementation of REDD+

programs in this country (2010–2015) reduced forest cover loss significantly by 35%, which

is equivalent to a reduction of 12.8 million tons in CO2 emissions [109]. Guizar-Coutiño

et al. quantified the performance of 40 REDD+ programs in nine countries using tropical

rainforest datasets and standardized assessment methods, revealing that deforestation rates

decreased by 47% and forest degradation rates decreased by 58% in the first five years of

project implementation, especially in areas where deforestation was more severe [110]. The

above findings support the implementation of REDD+ programs in the Xishuangbanna

region, which possesses the only tropical rainforests in China. Solving the problem of

carbon emissions caused by deforestation and forest degradation in this area and giving



Forests 2025, 16, 120 18 of 24

full play to its carbon sink function may be key to allowing China to achieve its projected

carbon targets in 2030 and 2060.

We calculated the impact of deforestation in Xishuangbanna on social benefits to

be 0.363, with the corresponding impacts on carbon emissions being 2.50 times and on

environmental degradation being 0.88 times. The implementation of REDD+ programs

attracts developed countries to provide funds that bestow localized social benefits. Such

a program could reduce carbon emissions by 2.50 times and have a 0.88-fold positive

impact on ecosystems. This not only proposes an effective carbon reduction scheme,

but also takes into account the livelihood concerns of local residents as well as providing

environmental protection, i.e., a three-win situation for the climate, ecology, and economy. It

is important that the government takes a firm stance when implementing REDD+ programs

and shows that developed countries fully assist developing countries in their emission

reduction efforts by addressing the potential conflict between sustaining the livelihoods of

farmers and protecting the environment, and serving the fundamental interests of farmers.

Incorporating the “Land Maxing” concept can help bridge this conflict by promoting

agroforestry systems and multifunctional land-use strategies that both support farmer

livelihoods and enhance ecological conservation [99]. By integrating socially modified tree

species and sustainable agricultural practices, “Land Maxing” enables the restoration of

degraded lands while maintaining economic productivity, thus aligning environmental

protection with the socio-economic needs of farmers. At the same time, considering that

leakage may occur during the implementation of REDD+ programs, local governments

should find a balance between economic development and REDD+ programs to create ideal

conditions for the program implementation. To achieve this, local governments can leverage

“Land Maxing” principles to design land-use policies that prioritize biodiversity, carbon

sequestration, and local economic benefits [101]. This approach minimizes leakage risks

by ensuring that land conversion is economically viable and environmentally sustainable,

creating a holistic framework for REDD+ success.

4.4. Limitations of the Models and Data

Despite the robustness and utility of the DPSI framework and PLS-SEM model em-

ployed in this study, there are certain limitations that need to be acknowledged. First,

the DPSI framework simplifies the complex interactions between socio-economic factors

and environmental changes, which may overlook non-linear and dynamic relationships

(Gari et al., 2015; Mohibul et al., 2023) [111,112]. Real-world interactions often involve

feedback loops and time delays that are not captured by the linear cause–effect relation-

ships assumed in the DPSI model. Addressing this limitation requires integrating the

DPSI framework with dynamic system models or agent-based models to capture these

complex interactions [111,113]. Second, the reliability of the PLS-SEM results is heavily

dependent on the quality and comprehensiveness of the input data [114]. Socio-economic

data used in this study may not fully account for informal economic activities or localized

land-use practices, particularly in rural areas. Furthermore, while remote sensing data such

as satellite imagery provide valuable insights into land-use changes, it has limitations in

distinguishing between different forest types and successional stages, which can signifi-

cantly affect biomass and carbon stock estimates [115]. To mitigate these limitations, future

studies could combine remote sensing data with ground-based forest inventory data to im-

prove the accuracy of carbon flux estimates [49,116]. Third, PLS-SEM, as a composite-based

approach, has its own methodological limitations. While it is well suited for exploratory

and predictive research, it may lack the rigor of covariance-based SEM in confirmatory

settings [117,118]. This limitation can be addressed by employing hybrid approaches

that combine PLS-SEM for an exploratory analysis with CB-SEM for confirmatory testing,
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thereby leveraging the strengths of both methods [119,120]. Finally, the study focuses on

a specific region, Xishuangbanna, which has unique socio-economic and environmental

conditions. The findings may not be entirely generalizable to other tropical forest regions

with different economic drivers, policy frameworks, and ecological contexts. To enhance the

generalizability of the findings, future studies could test the DPSI and PLS-SEM approaches

across different geographic regions and incorporate a wider range of socio-economic vari-

ables. Future research will focus on improving the robustness and applicability of the DPSI

framework and PLS-SEM models in assessing REDD+ benefits and informing sustainable

land-use policies.

5. Conclusions

This study utilized the DPSI and PLS-SEM models to empirically quantify the impact

of socio-economic shifts on the carbon, ecological, and social benefits of REDD+ in the

Xishuangbanna region. Our analysis revealed a close relationship between the driving,

pressure, state, and impact factors in the dynamic human–environment interaction sys-

tem. Socio-economic shifts significantly increased the input of production factors, driving

substantial changes in land use and causing unbalanced impacts across different REDD+

benefits. The impact coefficients reached 0.909 for carbon emissions, 0.322 for ecological

degradation, and 0.363 for social benefits, highlighting the disproportionate effect on carbon

dynamics. To address these challenges, the concept of “Land Maxing” provides a valuable

framework for balancing carbon reduction, ecological restoration, and socio-economic de-

velopment. By integrating multifunctional land-use strategies such as agroforestry systems

and mixed-use farming, policymakers can optimize land productivity while mitigating

the adverse effects of monoculture plantations. These strategies align with the goals of

REDD+ by promoting sustainable practices that enhance carbon sinks, conserve biodi-

versity, and support local livelihoods. The intricate causality network identified within

the DPSI model underscores the need for targeted policy interventions that address the

complexity of local socio-economic and ecological interactions. To achieve REDD+ tar-

gets in Xishuangbanna, policymakers should prioritize carbon reduction strategies while

incorporating “Land Maxing” principles to ensure that ecological and social benefits are

equitably distributed. This can include land-use zoning to protect natural eco-regions,

incentive-based mechanisms such as payments for ecosystem services, and support for

diversified agricultural systems. While climate change mitigation remains a long-term goal,

our findings emphasize the importance of adaptive and region-specific policies that align

land-use practices with the overarching goals of REDD+. Future research should focus on

evaluating the long-term effectiveness of these policies, exploring the integration of “Land

Maxing” principles, and developing innovative approaches to balance socio-economic

development with ecological sustainability.
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