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Abstract
The implementation of REDD+ (Reducing Emissions from Deforestation and Forest Degradation)
projects has become a key Nature Based Solutions strategy to protect at-risk forests using the sale of
verified emission reductions (carbon credits) as financing, generated by reducing forest loss against
counterfactual baseline scenarios. Controversy over the reasonableness of such baseline scenarios
has thrown this nascent market mechanism into disarray. While new technical approaches to
baseline-setting that promise wider market acceptance are set to roll out in the coming years,
existing projects are becoming unviable, as carbon credit buyers reduce investment due to lost
confidence in the integrity of emissions reduction claims. Transparent, reproducible methods to
assess existing REDD+ project baselines are needed in order to provide a clearer picture of the real
impact of projects, and provide an objective basis on which investment decisions can be made
today. Here we introduce such a method. In contrast to existing studies which utilize only one
method to create a single ‘control,’ we integrate actual forest loss rates from a variety of control sites
to establish a ‘zone of reasonable accuracy (or ZORA)’. Application of our method in Cambodia,
using two geospatial datasets (one global and one locally calibrated), shows that all three project
baselines fall within or below ZORA. This approach is fully reproducible, and provides a
transparent way for analysts to assess REDD+ baselines during this critical time when investment
in forest protection must increase dramatically and without delay.

1. Introduction

REDD+ stands for ‘Reducing Emissions from
Deforestation and Forest Degradation,’ a concept ini-
tially introduced by the UNFCCC under the Warsaw
Framework for REDD+. As a market-based mechan-
ism, it has been proven effective in protecting forests
at risk, especially when implemented on a land-
scape scale by projects [1–4]. A voluntary market has
been operating since the early 2000s, primarily under
the Verified Carbon Standard (VCS) wherein ∼100

REDD+ projects covering less than 1% of remaining
tropical forests are currently registered [2, 5–8]. Based
on the mitigation potential, cost-effectiveness, and
impacts (biodiversity and community), the conser-
vation of ecosystems through avoiding deforestation
has been identified as one of the highest priorities
for immediate action to mitigate climate change [9,
10]. Indeed, in tropical regions it may be the highest
priority [11], as in many tropical countries per capita
greenhouse gas emissions from burning fossil fuels
remain low, whilst net forest loss rates are high [12].

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ad616c
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ad616c&domain=pdf&date_stamp=2024-12-2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0470-2678
https://orcid.org/0009-0008-7478-2689
mailto:maren.pauly@everland.earth
mailto:will.crosse@everland.earth
mailto:cMoore@wcs.org
mailto:kbrown@wcs.org
mailto:ogriffin@wcs.org
mailto:ed@space-intelligence.com
mailto:jeremy@wildlifeworks.com
mailto:joshua.tosteson@everland.earth
http://doi.org/10.1088/1748-9326/ad616c


Environ. Res. Lett. 19 (2024) 124096 M Pauly et al

Given the intrinsic uncertainty in predicting
future deforestation [13] and the dependence upon
such predictions for the quantity of REDD+ Verified
Emissions Reductions that can be generated for off-
setting purposes, the ex post assessment of REDD+

baselines can shed light on the reasonableness of
emission reduction claims at a project level. Baselines
have to date been developed by projecting forest loss
measured over a historical reference period into the
future through the duration of a baseline validity
crediting period. While it is impossible to prove the
‘accuracy’ of a counterfactual scenario, the reason-
ableness of a baseline projection of forest loss may
be assessed in hindsight by comparing the projection
with actual deforestation that took place during the
validity period in comparison or ‘control’ areas which
are similar to the REDD+ project area, but did not
feature any REDD+ activities.

To date, one principal methodology has been
used to conduct ex post analysis of REDD+ pro-
ject baselines—the Statistical Matching (or similar
pixel matching) method [14, 15]. In this approach,
analysts match REDD+ project area geospatial data
variables with other areas of land within the same
country, then evaluate the statistical correspondence
between control site deforestation, project area defor-
estation, and predicted baseline deforestation. Two
studies based on this approach have concluded that
REDD+ project baselines systematically overstate the
forest protection and emissions reduction impacts of
the interventions, calling into question the efficacy of
the REDD+ mechanism as a whole and contributing
to a substantial reduction in investment [16, 17].

However, these studies have also sparked strong
criticism, focused on inappropriate matching and
control selection, inadequate communication of
modeling and geospatial errors, and other method-
ological and analytic issues [18]. The critiques high-
light that it is impossible to establish a perfect control
for a given project area encompassing potentially
many hundreds of thousands of hectares and thou-
sands of people. As well, in any small-scale control
area, forest loss may occur faster or slower than pre-
dicted within the context of the deforestation drivers
that are present in the broader landscape. Because
of these fundamental limitations, it is critical that
more comprehensive methods, utilizing high quality
geospatial data instead of low-resolution global geo-
spatial datasets [19, 20], be used to assess REDD+

project baselines (supplementary information 1).
Here we present a holistic approach to assess-

ing REDD+ baselines by developing, assessing, and
integrating results from a number of different con-
trol sites, and applying the approach to three pro-
jects in Cambodia (the Keo Seima Wildlife Sanctuary
REDD+ Project (KSRP), the Southern Cardamom
REDD+ Project (SCRP) and the Tumring REDD+

Project (TRP)) using two different maps of forest
cover change: Hansen et al [19] and a high accuracy,

locally calibrated land cover dataset produced spe-
cifically for this purpose by Space Intelligence. We
show how and why different control site selection
methods produce widely variable results, and assess
the performance of open-source datasets against
higher quality data. We integrate the results of all
approaches to establish the concept of a ‘zone of
reasonable accuracy,’ a generally applicable, holistic
metric against which other REDD+ project baseline
deforestation rates may be assessed.

2. Methods

2.1. Data collection
2.1.1. Project data
Project area shapefiles and other documentation
(project descriptions and monitoring reports) were
downloaded from the VCS Registry for the REDD+

projects (supplementary table 1). Local drivers of
deforestation were assessed based on the informa-
tion provided in public project documentation, con-
sultation with project developers and assessment
of the Space Intelligence derived land cover and
change maps developed for this study. According to
the VCS methodologies these projects are registered
under, Avoided Unplanned Deforestation baselines
are established by predicting the business-as-usual
deforestation (and resulting CO2 emissions) within
the REDD+ site (‘Project Area’) using a control area
(‘Reference Region’, RR [21]). The RRs for two of
the projects (SCRP, TRP) are the entire country of
Cambodia as they allocated nested baselines from the
Cambodia Forest Reference Level (FREL [22]) and the
KSRP RR was defined using the VCS Methodology
VM0015.

2.1.1.1. VCS selected project baselines
The SCRP and TRP utilized the FREL as the basis
for the baseline deforestation rate using a propor-
tional allocation approach (scaling emissions reduc-
tions based on the level of forest within the coun-
try vs. the project area). As the allocation of the
FREL was based on total forest area within pro-
jects rather than forest at risk of deforestation, the
baseline deforestation rate was the same as the FREL
(2.38%/year). The published overall FREL accuracy is
81.23% [22], hence an uncertainty of ± 18.77% will
be used (2.38 ± 0.45%/year).

The KSRP baseline predicted a total of 28 304 ha
of forest loss within the first 10 years of the pro-
ject: an average annual baseline deforestation rate of
1.70%. The reported mapping accuracy of the land
classifications underlying the baseline was reported to
average 93% and the confidence interval of the car-
bon stock was between ± 7.9% (dense forest) and
± 13.3% (open forest) [23]; hence the uncertainty
of the baseline will be presented here as the sum
of the fractional uncertainties (conservatively using
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the higher of the two carbon stock uncertainties)—
resulting in a total baseline uncertainty of at± 20.3%
(1.70% ± 0.35%).

2.1.2. Geospatial data
2.1.2.1. Space intelligence forest change maps (SIFC)
25-meter resolution Land Cover maps covering the
entire country of Cambodia were developed by Space
Intelligence usingHabitatMapperTM (supplementary
information 2.1) for 2010, 2015 and 2020.

From these, Forest Change maps (SIFC; forest to
non-forest classes, and areas of stable forest and stable
non-forest) were constructed to determine the rates
of deforestation.

2.1.2.2. Hansen forest cover and change maps (HAN)
Hansen et al [19] forest cover and forest loss
maps (30 m resolution, 10% canopy cover) version
1.10 were downloaded (https://storage.googleapis.
com/earthenginepartners-hansen/GFC-2022-v1.10/
download.html) for the relevant 10 × 10 degree
granule covering Cambodia (hereafter referred to
as ‘HAN’; supplementary information 2.2). Annual
forest cover was calculated by subtracting the annual
forest loss from 2000 forest cover, cumulating the loss
over time. This was calculated for the project areas,
control areas, jurisdictions and country.

2.1.2.3. Map accuracy assessment
Independent Accuracy Assessments (IAAs) were
designed based on best practices [24] to determ-
ine the accuracy of the SIFC and HAN maps. The
strata used in the IAA were Stable forest, Forest loss,
Forest gain and Stable non-forest. A stratified random
sampling design was used as it is easily extensible and
provides unbiased estimators for the accuracies and
their variances [24]. A target sample size was estim-
ated according to sampling theory (with a minimum
of 100 samples for each class) and extended (pro-
portionally to the areas of each class in the maps)
to reduce the uncertainties in user’s accuracies. The
spatial assessment unit was defined as a square of
25 m side. Sample assessment was performed using
visual assessment of Sentinel-2 and Landsat cloud
free mosaics (RGB and false color), Planet NICFI
and where available Google and Bing high resolution
images. Analyst confidence assessments were used to
eliminate points where the available data was insuffi-
cient to confidently assess the sample (supplementary
information 2.3).

2.1.3. Control area selection
The predicted annual baseline forest loss for each pro-
ject was compared to actual average annual forest loss
within various control areas using the two different
forest change datasets (HAN, SIFC) fromproject start
(KSRP: 2010, TRP & SCRP: 2015) to 2020. These con-
trols were selected using four different methods of
varying complexity, outlined below.

2.1.3.1. Method 1: reference region (RR)
Method 1 utilized the project-defined Reference
Regions (RRs). Based on the various VCS methodo-
logies (VM0007, VM0009, VM0015; see supplement-
ary table 1), the RRs should be matched with the pro-
ject areas based on landscape factors (forest type(s),
soil class(es), slope, elevation), transportation net-
works, human infrastructure (road, river, and settle-
ment density), social factors and policies/regulations
[21].

2.1.3.2. Method 2: proxy area (PrA)
We defined Proxy Areas as an alternative to the VCS
methodology RRs. These PrAs were defined by hav-
ing the same set of ministerial land tenure arrange-
ments and legal status as the project area in question,
within the same province and/or adjacent provinces
with similar physiological characteristics.

2.1.3.3. Method 3: jurisdictional approach (JA)
For the jurisdictional approach, the province/state
where the project is located is used as a control as
per Pauly et al [25]. In the case of SCRP (where
the project occupied a large portion (>40%) of the
state), adjacent states were included in the analysis.
The geospatial bounds of the REDD+ project areas
were removed from the jurisdictional area to ensure
REDD+ interventions were compared to surround-
ing non-REDD+ forests.

2.1.3.4. Method 4: statistical pixel matching (SPM)
A set of control pixels were defined for each project
using covariates (supplementary information 3.1).
Pixels rather than larger contiguous areas of land
(as per West et al [14, 15]) were selected as smal-
ler controls benefit from a larger number of poten-
tial matches. This is particularly useful in Cambodia,
where contiguous areas of forest have disappeared in
recent decades, reducing the number of large forest
areas that can be used as REDD+ control sites.

The PrAs defined in Method 2 were used as the
initial Area of Interest (AOI) for each project (sup-
plementary information 3.4). Within these AOIs, a
series of covariates known to influence the likelihood
of deforestation were selected, including: distance to
roads, distance to previous conversion, population
density, elevation and slope; with distance to previ-
ous conversion known to be a particularly strong pre-
dictor of near-term deforestation [26].

For matching, the Coarsened Exact Matching
methodology was employed [27] (supplementary
information 3.2). Thereafter, standard measures of
covariate balance (standardized mean difference and
quantile-quantile plots) were used to assess the bal-
ance between project and non-project covariate dis-
tributions. The rates of deforestation (the propor-
tion of matched pixels that were recorded as defor-
ested in SIFC maps) were calculated for project and
proxy areas. The average treatment effect in the
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treated (project) sample was determined using the
risk ratio of deforestation in project and proxy sites,
then bootstrapping to generate 95th percentile con-
fidence intervals around this estimate. The annual
forest change rates of the matched pixels was com-
pared to the baseline deforestation rates for each pro-
ject. Rosenbaum sensitivity analysis was performed
as a way to determine the robustness of the match-
ing to unobserved covariates [28] (supplementary
information 3.3).

2.1.4. Defining a zone of reasonable accuracy
We defined a ‘Zone of Reasonable Accuracy’ (ZORA)
based on the upper and lower uncertainty bounds of
the mean annual forest loss that occurred within all
the abovementioned control area methodologies for
a single REDD+ project over the same defined period
of time (supplementary information 4).

3. Results

3.1. Cambodia forest loss
Forest cover and loss within Cambodia differed
between the SIFC and HAN datasets (figure 1,
table 1). In 2010, forest cover in Cambodia was
10 064 948 ha according to SIFC and 7 788 491 ha
according to HAN (supplementary table 2). Between
2010 and 2020, SIFC data estimated forest loss total-
ing 3 341 407 ha (33.20% ± 12.06% of total forest
area, 3.32% ± 1.21%/year); primarily due to con-
version of forest land to agricultural and planta-
tion uses (supplementary figure 1). Over the same
time interval, a considerably lower rate was estim-
ated from HAN data (21.27% ± 12.71% total forest
loss, 1.93% ± 1.15%/year). Relevant to the use of the
Cambodia National FREL for the baseline setting of
SCRP andTRP, the total country-level forest loss from
2015 to 2020 was 1 298 644 ha (3.24% ± 1.18%/year)
according to SIFC since the project started; far less
forest loss was captured by HAN over the same period
(1.68% ± 1.00%/year).

The accuracy analysis indicated that SIFC better
captures forest cover loss in Cambodia. HAN demon-
strated a False Positive (FP) rate of 22.5%± 8.7% and
a Missed Detection (MD) rate of 37.3% ± 4.7%—a
forest loss total error of ± 59.75% (supplementary
information 2.3). Conversely, SIFC data had a FP of
23.6% ± 6.9% and MD of 12.7% ± 2.9%—a total
error of ± 36.31%.

3.2. Baseline assessments
Across all baseline assessment methods and datasets,
the actual deforestation rates varied widely—by an
average of ± 2.97%/year, with TRP demonstrating
the largest average results variance (± 5.00%/year)
compared to KSRP (± 2.13%/year) and SCRP
(± 1.79%/year). When comparing the same control
areas using the HAN vs. the SIFC data, the SIFC data

estimated an average deforestation rate (4.01%/year)
more than 2-fold higher than HAN (1.93%/year).

3.3. Keo seima REDD+ project (KSRP)
Under Method 1 (RR), the average annual forest
loss within the KSRP RR between 2010 and
2020 was 5.57% ± 2.02%/year according to SIFC
and 1.09% ± 0.65%/year from HAN (figure 3).
For Method 2, the KSRP PrA underwent a
2.49% ± 0.90%/year forest loss according to the
SIFC data, which—similarly to the RR—was far
higher than the forest loss rate detected according
to HAN (0.97% ± 0.58%/year). Following Method
3, Môndól Kiri and Kratie provinces experienced
forest loss rates of 2.70% ± 0.98%/year based on
SIFC (HAN: 2.30% ± 1.37%/year). According to
the SPM results, the distribution of points that had
experienced conversion from forest to non-forest
was spatially clustered (supplementary figure 5),
with a high proportion clustered on the southern
project border. Thus, the results demonstrate dis-
tinct differences when the adjacent Snuol Wildlife
Sanctuary (SWS) was included (AOIKS2,AOIKS3) vs.
when it was excluded from the analysis (AOIKS1);
with the former two model runs encompassing the
incoming deforestation frontier. Within the AOIs that
included SWS, the average annual forest loss within
the control points during the entire study period
(2010–2020) was 1.68% ± 0.61%/year for AOIKS2

and 1.56% ± 0.57%/year for AOIKS3; corresponding
closely to the baseline deforestation rate used for the
project. On the other hand, the model that excluded
SWS (AOIKS1) predicted only 0.59% ± 0.21%/year
for the study period (2010–2020).

On average, the baseline assessments predict a
baseline of 2.11% ± 1.01%/year; when only SIFC
results are considered the average ex-post forest
loss rate increases to 3.08% ± 1.11%/year. In both
cases, the zone of reasonable accuracy (ZORA) is
higher than the baseline established by the project
(1.70% ± 0.26%/year).

3.4. Tumring REDD+ project (TRP)
In the case of TRP, the RR underwent
3.52% ± 1.26%/year of forest loss according
to SIFC, and 1.68% ± 1.01%/year according
to HAN (figure 4). For Method 2, the selected
TRP PrA suffered a total 7.58% ± 2.75%/year
of forest loss according to the SIFC data; much
higher than the forest loss detected by HAN
(3.60% ± 2.15%/year). According to Method 3, SIFC
data estimated a loss of 6.53% ± 2.37%/year within
Kampong Thom, whereas HAN data only captured
2.53% ± 1.51%/year. For the SPM Method, the dis-
tribution of points that had experienced conversion
from forest to non-forest was spatially clustered in
the south and west, indicating an advancing front of
deforestation moving towards the project area (sup-
plementary figure 6). Within the two model runs, the
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Figure 1. Forest cover and loss from Space Intelligence (SIFC) and Hansen et al (HAN) datasets for 2010 and 2020. Forest loss
represents total 2010 forest cover lost between 2010 and 2020. Natural non-forest vegetation produced from SIFC only. More
detailed land classifications from SIFC data in supplementary figure 1. Forest cover in 2010 was estimated at 10 064 948 ha
(±1,027,806.83) from SIFC and 7788 491 ha (± 3,250,049.87) from HAN—decreasing to 6723 541 ha (± 686,590) and
6172 890 ha (± 2,575,878) in 2020 for SIFC and HAN, respectively.

annual forest loss within the matched pixels was very
high; 7.29%± 2.65%/year and 12.01%± 4.36%/year
for AOITRP1 and AOITRP2, respectively.

Together, the baseline assessment methodologies
show an average forest loss of 5.59% ± 2.68%/year;
when only SIFC results are considered, this average
increases to 7.41% ± 2.67%/year. In both cases, the
ZORA is significantly higher than the project baseline
(2.38% ± 0.45%/year).

3.5. Southern cardamomREDD+ project (SCRP)
Similar to the TRP, the SCRP RR underwent
3.52% ± 1.26%/year of forest loss according to SIFC;
lower than HAN predictions (1.68% ± 1.01%/year).
On a more localized level, the PrA and SPM
baseline methods predicted far less deforesta-
tion, ranging between 0.22% ± 0.08%/year and
0.64% ± 0.23%/year for SIFC data. However, both
the proxy and pixel-matched control areas include
very little ELC land, predominantly consisting of
protected areas. When this area is expanded to the
jurisdiction (Method 3) the observed deforestation

increases to between 1.33%± 0.48%/year (SIFC) and
1.62% ± 0.97%/year (HAN) (figure 5).

Taken together, the results from all baseline
assessments vary widely, depending on whether
larger-scale deforestation drivers and known ELC-
threats are taken into account. On average across
all approaches, the ZORA for the SCRP baseline
is 1.23% ± 0.73%/year (1.49% ± 0.54%/year for
only SIFC results), which is on the lower end
of the error threshold of the project’s baseline
(2.38% ± 0.45%/year).

4. Discussion

4.1. Zone of reasonable accuracy (ZORA)
Two REDD+ projects (TRP, SCRP) selected the
national FREL as the baseline (2.38% ± 0.45%/year)
whereas the third project (KSRP) developed a locally-
calibrated risk map, resulting in a baseline forest loss
rate of 1.70% ± 0.35%/year. Amidst this diversity of
baseline-setting approaches, this multi-control site ex
post analysis suggests that these Cambodian projects
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Table 1. A summary of the baseline assessment results, comparing the Space Intelligence (SIFC) and Hansen et al (HAN) datasets in
terms of forest cover (ha) at project start and average annual forest loss (%/year) from project start to 2020. Visualized in figure 2.

Parameters KSRP TRP SCRP

Project area

SIFC
Forest cover project start (ha)

166 155.31 40 820.56 438 162.63
± 16 967.36 ± 4168.49 ± 44 744.05

Average annual loss (%)
0.73 5.15 0.04
± 0.27 ± 1.87 ± 0.01

HAN
Forest cover project start (ha)

128 901.69 33 548.25 363 011.38
±53 789.23 ±13 999.31 ±151 480.57

Average annual loss (%)
1.09 6.15 0.01
±0.65 ±3.67 ±0.01

Jurisdiction

SIFC
Forest cover project start (ha)

2171 716.00 386 936.25 1376 960.56
±221 770.1 ±39 512.94 ±140 611.7

Average annual loss (%)
2.70 6.53 1.33
±0.97 ±2.35 ± 0.47

HAN
Forest cover project start (ha)

1447 498.63 381 062.31 1223 330.69
± 604 024.93 ± 159 013.03 ± 510 482.16

Average annual loss (%)
2.30 2.53 1.62
± 1.37 ± 1.51 ± 0.97

Reference area

SIFC
Forest cover project start (ha)

586 180.00 8022 186.00 8022 186.00
± 59 859.21 ± 819 205.18 ± 819 205.18

Average annual loss (%)
5.57 3.52 3.52
± 2.00 ± 1.26 ± 1.26

HAN
Forest cover project start (ha)

445 499.19 6924 921.19 6924 921.19
± 185 901.81 ± 2889 691.88 ± 2889 691.88

Average annual loss (%)
1.09 1.68 1.68
± 0.65 ± 1.01 ± 1.01

Proxy area

SIFC
Forest cover project start (ha)

726 164.75 218 865.50 719 206.88
± 74 154.09 ± 22 349.99 ± 73 443.57

Average annual loss (%)
2.49 7.58 0.64
± 0.89 ± 2.73 ± 0.23

HAN
Forest cover project start (ha)

466 014.63 220 311.81 772 058.31
± 194 462.67 ± 91 933.65 ± 322 171.27

Average annual loss (%)
0.97 3.60 0.15
± 0.58 ± 2.16 ± 0.09

Synthetic controls SIFC Average annual loss (%)
0.97 9.77 0.45
± 0.35 ± 3.51 ± 0.16

Average assessment
results (Annual loss %)

SIFC + HAN 2.11 ± 1.01 5.59 ± 2.68 1.23 ± 0.73
SIFC only 3.08 ± 1.11 7.41 ± 2.67 1.49 ± 0.54

Project baseline (%/year) 1.70 ± 0.35 2.38 ± 0.45 2.38 ± 0.45

are operating under baselines that fall within, or are
conservative with respect to, the ZORA as defined
herein.

4.2. Dataset quality implications
Across all projects, HAN data estimated far less
forest loss across the baseline assessments (average:
1.92%± 1.15%/year) than the locally calibrated SIFC
data (average: 3.65% ± 1.33%/year); particularly for
the RR of KSRP (HAN: 1.09% ± 0.65%/year, SIFC:
5.57% ± 2.00%/year). Since HAN data (or similar
global, uncalibrated data) has been used for other
previous REDD+ baseline assessment studies, this
could have important implications on the results of
such studies—potentially producing a higher delta

between the actual forest loss in relevant controls and
the selected baseline deforestation rate (concluding
that baselines systematically overstated). Importantly,
this likely impacted the reliability of studies wherein
HAN forest cover data was applied as part of control
selection [15]. The results in this study demonstrate
the benefit of utilizing locally-calibrated land cover
datasets as a basis for assessing REDD+ project effect-
iveness and the reasonable accuracy of baseline.

4.3. Unique deforestation risk factors in Cambodia
Forest clearing for agriculture is a key driver of defor-
estation in Cambodia, enabled by increased road
density [29]. Native forests have given way to rubber,
cassava, rice, and sugarcane, as both smallholder and
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Figure 2. The selected project baseline deforestation rates for (a) Keo Seima REDD+ Project, (b) Tumring REDD+ Project, and
(c) Southern Cardamom REDD+ Project compared to the baseline assessment method results using two geospatial datasets: SIFC
(‘S’, Space Intelligence Forest Change) and HAN (‘H’, Hansen et al [19]). Baseline Assessment methodologies refer to: Method 1:
Reference Region (RR, ‘Reference’), Method 2: Proxy Area (PrA, ‘Proxy’), Method 3: Jurisdictional Approach (JA, ‘Jurisdiction’),
and Method 4: Statistical Pixel Matching (‘Synthetic’). The error bars of the baselines refer to the errors reported within the
project documentation as described within the Results. Error bars of the baseline assessments reflect uncertainties of the datasets
within the region mapped. Orange bar line represents the average annual forest loss predicted across all baseline assessment
approach methods and the pink bar represents average across SIFC baseline assessment methods highlighted with an asterisk.
Multiple options for Method 5 presented as per the various potential AOIs (Areas of Interest; see Methodology). The asterisk on
the Synthetic method bar represents the most realistic AOI (see supplementary information: selection of AOIs).
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Figure 3. Forest loss represented by the progression of non-forest (plantations, agriculture and bare land) in (a) 2010 and (b)
2020 within the region of Keo Seima Wildlife Sanctuary REDD+ project. Largest AOI represented (AOIKS2).

Figure 4. Forest loss represented by the progression of non-forest (plantations, agriculture and bare land) in (a) 2010 and (b)
2020 within the region of the Tumring REDD+ project. Largest AOI represented (AOITRP1).

large-agribusiness farming have continued to expand
[30] through legal and illegal (i.e. land grabbing)
approaches. Whilst land grabbing in the form of
small-scale agricultural expansion is perhaps themost
widely recognized form in the tropics, illegal logging
has also contributed to deforestation and degrada-
tion, with valuable hardwoods such as rosewood and
teak being targeted [31–33].

However, top-down ELC-based land grabbing
is also an important driver of deforestation in
Cambodia [34]. Deforestation is disproportionally
high across ELCs which accounted for around 35% of
agricultural land (estimated 2015; SIFC). Altogether,
we find that between 2010 and 2020 Cambodia lost

33% of its forests, whilst plantations and agricul-
tural land increased by nearly 2-fold (now supersed-
ing total remaining forest cover). In Cambodia, land
rights are not strongly backed by dependable legal
structures; as such, whilst the granting of new ELCs
was officially suspended in 2012 (Directive 01 [35]),
concession contracts continue to be granted by the
government [36]; even within protected areas and
other pristine forest landscapes, despite the posturing
that ELCs should only be established within vacant
or degraded lands [36, 37]. Recent research suggests
that 95 ELCs have been granted within 18 protec-
ted areas over the last 20 years, currently covering a
total of 12.5% of protected area land—resulting in
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Figure 5. Forest loss represented by the progression of non-forest (plantations, agriculture and bare land) in (a) 2010 and (b)
2020 within the region of the Southern Cardamom REDD+ project. Largest AOI represented (AOISCRP1).

the downgrading and/or degazettement of 18 protec-
ted sites [38]. Accordingly, ELCswere includedwithin
control area selection as they represent a real threat to
the REDD+ projects (supplementary information 5).
The integration of ELCs in this study highlights that
there can be critical factors impacting the ‘reasonable-
ness’ of a baseline prediction, but which are not easily
amenable to geospatial analysis.

4.4. Methodology limitations and the nature of
counterfactuals in complex landscapes
Whilst this study underlines a series of different
baseline assessment methods, it is still fundament-
ally impossible to validate the ‘accuracy’ of baseline
deforestation predictions for a treatment area, as they
are by definition what did not take place in reality.
Beyond this fundamental constraint, other methodo-
logical issues illustrate the limitations associated with
different approaches to control site selection.

For example, the RR approach is a relatively
simple methodology to predict whether the baseline
deforestation proceeded within the RR as expected at
the time of project registration. However, given the
fact that a single control site is used, validating the
baseline deforestation rate by assessing ex-post RR
forest loss is more a proof of the accuracy of the defor-
estation model outputs rather than an evaluation of
whether the baseline deforestation rate applied to the
project site was realistic.

For the PrA and SPM methods, there are many
decision points in the development of this method
which may profoundly impact the result. The selec-
tion of appropriate comparison areas is a critical step
and should be based on a sound conceptual model
of the intervention and counterfactual scenario [39,

40]. The approach taken here of selecting based on
land management status is widely used and is simple
and defensible and has been widely applied as a basis
for assessments [28], yet it has not been adequately
applied to the other REDD+ baseline studies [14, 15].
Within this framework, there does need to be scope
for the consideration of the particular circumstances
of a given comparison area at the project baseline
to ensure it represents a realistic control. This ana-
lysis accounts for a subset of core covariates (e.g.
slope, elevation, local population and distance to pre-
vious deforestation, roads and rivers) that are com-
monly accounted for inmatching type analysis in aca-
demic literature [28, 40]; other factors could be added
which pertain to both accessibility and utility of forest
resources or land and resource user pressure (e.g. soil
type, distance to a large city). Despite these complex-
ities, when the method is applied at a fine (pixel)
spatial resolution and the match quality is proven to
be strong, then this method is thought to be highly
accurate in establishing a realistic control.

The JA provides a more generalized control area
that integrates the various deforestation rates of smal-
ler land areas within the larger jurisdictional area sur-
rounding a project, providing a more holistic indica-
tion of the deforestation risk present across the wider
landscape. This approach becomes more limited to
the extent that a project is located in very high or low
deforestation risk areas within the jurisdiction. For
example, the majority of KSRP is located within the
southwestern corner of Môndól Kiri province, only
a small section of the PA stretching into the adjacent
Kratie province; with the former having much lower
deforestation rates historically than the latter. The
integration of both provinces into the JA assessment

9
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of KSRP is vital as Kratie encompasses the incom-
ing deforestation frontier which has not yet penet-
rated across much of Môndól Kiri. Hence, a know-
ledge of deforestation frontiers and relative risk is
important for the interpretation of results using this
methodology.

Nonetheless, and of special interest to this study,
the deforestation rates associated with the JA unsur-
prisingly match closely those associated with the
ZORA for each studied project. Because the JA reflects
an integrated picture of deforestation across all poten-
tial control sites within a wider area surrounding a
project, we consider it a sufficient, and analytically
simpler, basis on which to establish the ZORA for a
given project.

5. Conclusions

Here we present a series of potential methods of
selecting control areas and an initial definition of a
zone of reasonable accuracy—both of which should
be further tested in different landscapes. Each indi-
vidual approach for creating control areas has its
own strengths and limitations. The ZORA integra-
tion approach is a pragmatic, holistic way to assess
the baseline on an ex post basis using a series of con-
trol areas. In the Cambodia context, we find the JA,
which integrates across all potential control sites sur-
rounding a project area, offers a simpler, effectively
equivalent way to establish the ZORA for a given
project.

In applying this approach, we demonstrate that
the VCS baselines of three Cambodian REDD+ pro-
jects either fell within, or were below, their applic-
able ZORAs. These results contradict other stud-
ies in which single methodologies and uncalib-
rated data ultimately result in the conclusion that
REDD+ baselines are systematically overestimated in
general [14, 15], and specifically in the same sites in
Cambodia [15]. Rather, the results here show that
REDD+ project baselines in Cambodia are in line
with, or lower than, observed deforestation when
viewed holistically across a variety of comparison
areas.

The study provides a transparent, replicable
method that reduces bias, uses high quality, locally
calibrated geospatial data, and provides a relatively
simple, generally applicable standard basis for assess-
ing the reasonable accuracy of a REDD+ project
baseline. The method has high potential in the short
term to provide quality assessments of carbon cred-
its issued under existing REDD+ project baselines
before new REDD+ carbon crediting methodologies
that may be viewed as higher quality (particularly the
VCSVM0048 [41]) come into force. Such assessments
can provide a robust, objective basis for evaluating
existing projects and unlocking urgently-needed con-
servation finance in this interimperiod, withoutwait-
ing for new methodologies to emerge.
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